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Choices of Expansion and Testing Functions

for the Method of Moments Applied to

a Class of Electromagnetic Problems
M. I. Aksun, Member, IEEE, and Raj Mittra, Fellow, IEEE

Abstract~t is well known that the choice of expansion and test-

ing functions plays an important role in determining the rate of

convergence of the integrals associated with the moment method
matrix, and that an improper choice can lead to erroneous results.
The main objective of this paper is to critically examine this

convergence issue and to provide criteria for the choice of these
expansion and testing functions. The question of whether these
functions need to satisfy the Holder condition is also investigated

and the convergence behavior of the integrals involved in the
spatial and spectral domain moment method is discussed for some
representative expansion and testing functions.

I. INTRODUCTION

T HE METHOD of moments (MoM) [1], which is one

of the most commonly used numerical techniques for

solving electromagnetic problems, is based upon the transfor-

mation of an operator equation into a matrix equation. While

the computation of the matrix elements in the MoM can be

carried out relatively efficiently when the medium involved is

free-space, the introduction of a substrate material backed by

a ground plane can render this task extremely time-consuming

because of the need to compute the Sommerfeld’s integrals

appearing in the Green’s functions. One approach to circum-

venting this difficulty is to work in the spectral domain [2]

where the closed-form expressions for the Green’s functions

can be obtained in a relatively straightforward manner [3].

Another solution to this problem has been recently developed

[4]–[6] in the spatial domain where the Green’s functions cor-

responding vector and scalar potentials were cast into closed-

forrns. Both the spatial and spectral domain approaches have

been successfully applied to many electromagnetic problems

involving microstrip-type structures. However, the questions

pertaining to the choice of the expansion and testing functions

in formulating the MoM matrix have not been addressed

in much detail except in the context of linear spaces and

operators strictly from a mathematical point of view [7],

[8], and briefly in connection with the spectral Galerkin’s
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method [9]; consequently, there are still some open questions

regarding the use of certain expansion and testing functions

for the operator equations that are used in electromagnetic

problems [10]–[13]. The purpose of this paper is to show

mathematically that there is an admissible class of functilcms

for expansion (testing) functions depending upon the choice

of testing (expansion) functions. If one choose these functions

such that they fall outside of the admissible class, the integrals

involved in the application of the MoM can be divergent and

the results can be erroneous. Additionally, the issues involving

the slow convergence of the integrals often encountered in the

spectral domain, and the handling of discontinuous expansion

functions at junctions or comers, and in the source excitation

region, are also addressed.

We begin by discussing briefly, in Section II, the application

of the moment’ method in the spatial and spectral domains and

by deriving the expressions for the MoM matrix elements that

turn out to be improper integrals. The convergence of these

integrals is studied for different combi~ations of expansion and

testing functions in both the spatial and spectral domains. This

is followed in Section III, with a discussion on the convergence

behavior of the integrals involved for a representative choice

of expansion and testing functions.

II. CONVERGENCE CRITERIA FOR THE

INTEGRALS OF THE METHOD OF MOMENTS

Consider, for the sake of illustration, a general microstrip

structure shown in Fig. 1 where it is assumed that the substrate

layer extends to infinity in the transverse directions. Let the

thickness and the permittivity of the substrate be denoted by d

and G., respectively. Although the Green’s functions discussed

herein pertain to the geometry shown in Fig. 1, the comments

appearing below apply to more general geometries as well.

A. Convergence Study in the Spatial Domain

Let us begin by representing the electric fields in terms of

scalar and vector potentials, @ and A, respectively,

E = –jwA – V+ (1)

The vector and scalar potentials can, in turn, be represented in

terms of convolution integrals, involving the surface current

density J on the patch, as

A=~A*J (2a)
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Fig. 1. A general microstrip structure.
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where GA “1s the dyadic Green’s function of the vector

potential and G~ is the Green’s function of the scalar potential.

From (2), the tangential electric fields on the plane of the patch

(Z = O) can be written as

EY = – jwG:Y * JY

+;jGq*V” J]

(3a)

(3b)

It may be noted that the spatial domain Green’s functions,

appearing in (3), have algebraic singularities of the first orde~

that is, G w 0(1/lT- – t-l) as r- ~ r’, where r and r’ are the

observation and source coordinates, respectively.

To solve for the surface current density on the patch by the

MoM, the first step is to expand the surface current densities

by a linear combination of the expansion functions as follows:

(4b)
n

where An and B. are the unknown coefficients of the ex-

pansion functions Jzn and Jvn, and Jz, and Jvs are the

source representations. These expansion functions can be

subsectional, traveling-wave, or entire-domain type depending

upon the geometry under consideration. Next we substitute

(4) into (3) and test the resulting equations using the functions

T.m and Tvn and a suitable definition of inner product, e.g.,

(u,g)=JJdx dyf”(z, y) g(r, U) (5)

The process of testing could be interpreted as satisfying the

boundary conditions on the tangential electric fields on the

patch in the integral sense, provided that the domain of the

testing functions covers the entire patch. Since the testing

functions and the tangential electric fields are finite on the

complementary regions, the left-hand sides of (3a) and (3b)

become zero after the testing, and the following algebraic

equations for the coefficients An and B~ are obtained for

each m in (6a) and (6b) at the bottom of the page, where

J. = J.,x + Jvsy.

Note that some of the inner products in (6) contain dif-

ferentiations that result in higher order singularities in the

corresponding integrands than those that do not contain these

derivatives. Thus, it will be sufficient to study only the terms

with the derivatives in order to ensure the convergence of

all the integrals. In general, each inner product term in the

spatial domain is a five-dimensional integral: one of these

is associated with the Green’s function itselfi two of them

are convolution integrals; and, the other two are the inner

products defined in (5). Since the numerical integration of the

five-dimensional integrals is very expensive, the convolution

over the Green’s function and the expansion function is often

transferred over to the expansion and testing functions and

the convolution is performed analytically. This transfer of

the convolution requires an interchange of the order of the

integrals, which is possible if the original integral is uni-

formly convergent. Here, we will use the following sufficiency

criterion [14] for the uniform convergence of the integral:

where F(xl, xz, . . ..x~. xj, xj, . . . . z~ ) is the integrand given

in a bounded domain; A is a constant; a > O; and r denotes

the distance between (zl, xz, . . ., x~) and ($j, zj, . . . ,$~).

The issue regarding the choice of the expansion and testing

functions can now be discussed by investigating the elements

of (6a) and (6b). Since the strongest conditions on the expan-

sion and testing functions for the convergence of the integrals

(6a)

(6b)
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would be set by the term containing the double derivatives

with respect to the same variable, only the integral containing

J~~ and Tz~ will be studied in detail. This integral is:

(Gm:[Gg*:Jm])

=

J

dx dy T$m(x, y):
i

dx’ dy’

D(T) D(B)

where D(T) and D(B) represent the domain of the testing and

expansion functions, respectively, and the second term in the

inner product is the tangential derivative of the scalar potential.

If one were to calculate the derivative of the inner double

integral in (8), which is a convolution integral, the derivative of

the expansion function in this integral has to satisfy the Holder

condition [15]. This condition is somewhat stronger than

the continuity condition but weaker than the differentiability

condition [16]. However, in the MoM, we are interested in

calculating the inner product of the derivative of the scalar

potential with a testing function. If the testing function is at

least piecewise continuous, we can use integration by parts to

transfer the differentiation of the scalar potential over to the

testing function as follows:

=
/ ‘yTxm(%y)(G~*:Jzn)’zeo(T’
—(&a, Gq * ;Jm

)

(9)

where the expression in the braces is evaluated at the bound-

aries of the testing functions, denoted here by Q(T). Once

this is done, the restriction on the charge density to satisfy

the Holder condition can be lifted. The step involving the

integration by parts must be justified, because the piece-

wise differentiable expansion functions cannot ensure the

existence of the tangential derivative of the scalar potential.

In accordance with the discussion presented in [17], the

existence in Riemann sense of either one of the integrals

in (9) also implies the existence of the other. The integral

in the right hand side of (9) is guaranteed to satisfy the

Riemann’s integrability condition if the testing functions are

at least piecewise continuous functions in the direction of

differentiation while the expansion functions are piecewise

differentiable or smoother.

Similar arguments can be applied to the second inner prod-
uct term in (6b) where the differentiations are with respect to

y. Note also that the other terms which have derivatives along

x as well as y dkections do not require as strong a condition

on the expansion and testing functions as do the terms that

contain both of these differentiations in the same direction. As

a consequence, the expansion functions for the current density

should be chosen at least from a class of piecewise continuous

functions and the testing functions should in turn be selected

from piecewise differentiable functions, or vice versa. These

conditions apply to these functions along the differentiation of

the scalar potentials. This, in turn, implies that

where F.(~), GY (y) G class of piecewise differentiable func-

tions and Pz (z), Rv (g) E class of piecewise continuous

functions, or vice versa. However, the functions can have

square-root singularities in the direction orthogonal to that

of the differentiation to model the singular behavior of the

edge current, ie., GZ (y), FY (z), RZ (y) and PY(x) c class of

piecewise continuous functions with or without square-root

singularities. The requirements on the testing and expansion

functions can be relaxed by using higher order differentiable

functions. For instance, if the chosen expansion (testing)

functions are twice-differentiable, then piecewise continuous

testing (expansion) functions or even impulse distributions are

sufficient to ensure the convergence of the integral. Among

the commonly used expansion and testing functions, piecewise

sinusoids (PWS) and triangle functions are piecewise differ-

entiable functions, pulse functions and any type of junction

expansion functions, e.g., half triangle, half PWS, etc., are

piecewise continuous functions.

It is essential to use piecewise continuous expansion func-

tions, with finite discontinuities in the direction of the differen-

tiation, for the geometries that have junctions, load or source

connections in the domain of interest [ 18]–[20]. For these

cases, the impulse functions generated by the differentiations

of the expansion functions at the point of discontinuities should

not be included in the calculations, because the divergence

of the current in (3) must be finite at these junctions. This

could be interpreted simply as requiring the continuity of the

current at the junctions. This is tantamount to saying thai the

discontinuity of the current in one direction must equal tcl the

negative of the discontinuity in the other direction such that

their derivatives cancel each other at that point.

B. Con~’ergence Study in the Spectral Domain

The tangential electric field on the plane of the patch due

to the patch currents Jz and Jv can be written, in terms of the

electric field Green’s functions, as convolution type coupled

integral equations as follows:

E.(fr, y, z = o)

——
~

di dy’ [Zz.(z – Z’,y – y’)Jz(z’, y’)
D(B)

+ .Zry(Z – Z’, Y – Y’)JU(YJ’, Y’)] (ha)

Ey(z, y, z = o)
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—-J (h’ (iZJ’[Zvz(z– x’, ‘g – g/)Jz(2+,Y’)

D(B)

+ Zvy(z– 2+,y– y’)Jy(z’,y’)] (llb)

where the Green’s function Z,j is the contribution of a unit

j-directed electric current element at the microstrip to the

electric field E, at the microstrip plane. In the spectral domain

formulation, these equations are Fourier transformed to yield

the following algebraic equations

The electric field Green’s functions in the spectral domain

can be readily obtained by using the immittance approach

described by Itoh [3]. Theapplication of the moment method

starts with the expansion of the current densities as in (4),

substitution of the Fourier transforms of these expansion

functions in (12) followed by the testing with the Fourier

transforms of the testing functions. Following this procedure

one arrives at the following algebraic equations:

where the inner products are defined over an infinite domain.

The convergence of the integrals is guaranteed provided that

p’(kl, k~,... , kn)l < Ak-n-’ (14)

where F(kl, k2,. . . . Q is the integrand, h = ~k~ +k~ +. . .+k~

and e > 0.

A knowledge of the leading terms of the asymptotic ex-

pansions of the Green’s functions, expansion functions and

testing functions is needed for establishing the convergence of

the inner products in (13). The leading terms of the Green”s

functions are obtained from (A1)–(A6) in Appendix A and

are given by

.2Zz4 v= (15a)
jkxo(l + 6.) ~2 + ~2

ZZy= Zyz-+ 1 & “5b)jw~o(l + e.) ~2 + ~z

(15C)

As for the expansion and testing functions, it can be shown

that they have the general behavior of the form;

(16a)

(16b)

The convergence of the inner products in (13) can now be

investigated with a view to defining the minimum of the orders

of Icz and kg. Note that the leading terms of the expansion and

testing functions for large spectral variables have been chosen

for the worst case conditions because their numerators have

been assumed to be constant. We observe, for instance, that

the Fourier transform of a pulse function is sin (k)/k whose

integral over an infinite domain is convergent whereas that of

I/k is divergent. Returning to the inner products in (13), the

convergence of the integrals are investigated as follows:

i)

+m

‘(&)J&o(&)
The convergence of the above integral is guaranteed if one

chooses a + ~ > 3 and ,B + q > 1. Some comments on

the class of expansion and testing functions which satisfy the

above criteria are given later in this section.

ii)

—cc

o(&)&o(&)
For this integral, the conditions a + v >2 and@+ ~ >2 must

be satisfied in order for the integral to converge.

Similarly, by considering the other two inner products in

(13b), we can derive the conditions on the exponents of the

spectral domain variables kz and kv. These are: iii) L + v >2

and K+q>2, iv) L+v> land fi+~>3. The conditions

given above are sufficient for the convergence of the integrals,

At this point it would be useful to list the asymptotic

behaviors for large k of a number of representative expansion

and testing functions frequently employed in the moment

method solutions to electromagnetic problems of the type

being considered in this paper:

${functions with square-root singularities} < O(Jo(k)) as
k-+ee
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7{piecewise continuous functions} S 0(1/k) as k + cc

~{piecewise differentiable functions} s 0(1/k2) as k +

cc

.F{piecewise twice-differentiable functions} S 0(1/k3) as
k+w

where f denotes the Fourier transfotm and k is the spectral

domain variable. It should be emphasized that there exists

the possibility that some of the functions in the same class

might decay slightly faster than the others. As an example,

we mention the triangular function, which is a piecewise

differentiable function, and which has the Fourier transfotm in

the form of sin2 (k)/k2. As mentioned before, the worst case

behaviors in the spectral domain are considered here so that

the convergence for every function in a given class is assured.

For the specific geometry, one can refer to the convergence

criteria and the classification of functions given above in order

to facilitate the choice of the expansion and testing functions.

III. RESULTS AND DISCUSSIONS

In this section we discuss several choices of the expansion

and testing functions from the point of view of convergence.

We draw from the pool of commonly used expansion and

testing functions in electromagnetic problems, viz., the im-

pulse, pulse, triangular, piecewise sinusoid, and entire domain

functions. A number of different combination of expansion

and testing functions are considered in the following:

(i) Both J% and Jv represented by pulses in x as well as y

directions: Since the pulse is a piecewise continuous function,

it can not satisfy the Holder condition. The current expansion

functions J.n and Jyn are represented as [P(z) -P(Y)], where

P(.) denotes the pulse function. Both of the differentiations in

the second inner product term in (6a) should be transferred to

the testing function, implying that the testing function should

be selected at least from the group of piecewise differentiable

functions with respect to x. While the transfer of the differ-

entiation on the expansion function may not be strictly valid

in the classical sense, it is nonetheless legitimate to carry it

out in the sense of distributions. From the examination of

the third inner product in (6a), the testing function should at

least be a piecewice continuous function in y. In summary, the

testing functions Tzm and Tvm could be triangular functions

along their polarizations and pulse functions in the orthogonal

directions of their polarizations. Although it might appear that

this choice of the expansion and testing functions does not

yield convergent integrals in the spectral domain the integrals

are actually convergent albeit slowly. This is because the

Fourier transforms of the pulse and triangular functions are

proportional to sine(k) and sine 2(k), respectively, and these
are less than or equal to I/k and l/k2 for O ~ k < cm,
(sine (~) ~ l/k, sinc2(k) s l/k2). The convergence of the

integrals in the spectral domain can be improved by using the

following expansion and testing functions. (ii) Both J. and Jv
represented by roof-tops: A roof-top consists of a triangular

function in the direction of polarization and pulse function

in the orthogonal direction to the polarization of the current.

With this choice, the convergence is sufficiently rapid in the

spectral domain and it is not necessary to transfer the inner

1

0
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-G

-5

-6

1

. . . .. . . .. .

0 50 100 150 200 250 300
kx

Fig. 2. Convergenceof a spectraldomain integral for a roof-top expansion
function and three different testing functions: (1) [Pulse(z) Pulse(y)]; (2)
[Triangle (r) Pulse(Y)]; (3) [(pulse(z)* Triangle(z) ) Pulse(y)]. Vertical
axis is log10 lI(kc)/10 I where 1 k defined in (17) and Io = I(L) with
O < .& ~ Ak..

differentiations to the testing functions in the spatial domain.

There is, however, a disadvantage in using the higher order

differentiable functions, namely their Fourier transforms are

oscillatory. This could be seen by examining the pulse and

triangular functions in the spectral domain. The use of the

higher order differentiable functions as expansion or testing

functions helps decrease the range of the integrations at the

cost of increasing the complexity and computation time for

the integrands. We will now illustrate the convergence of

the following moment integral for three different choices for

testing functions

cum

I= H dkz dkg f’zm(k., k,)
00

x“&~m(h,ky) (17)

z Y

where

~x~(kz, ky) = ~{ Triangle(z) Pulse(y)}

= sinc2 (kZ/2) sine (kV)

[

1. 7{ Pulse($) Pulse(y)}

= sinc2 (kZ/2) sine (kg

fh7t(& ky) =
2. X{Triangle(z) Pulse(y)}

= sinc2 (kZ/2) sine (IcV

I 3. X{[Triangle(z)* Pulse(~)] Pulse(y)}

(=’ sinc2~kZ /~) sine (LZ’j2) sinc(ky)

Fig. 2 shows the normalized contribution of integral I (17’) on

each sub-interval Ak~ of km, until it becomes less than 10-5.
We observe that the integration limit reduces significantly as

one goes from the testing function 1 to 3, viz., from 6.6 CPU

sec to 1.2 CPU sec on the Cray Y/MP. (iii) An entire do-

main expansion function with a square-root singularity: PJote

that the square-root singularity appears not in the direction

of the differentiations but in the orthogonal direction, (6).
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Consequently, the convolution integrals are

because the order of singularity is less than

lEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES.

still integrable

2 which is the

criterion for the uniform convergence of the two-dimensional

integrals (7). For this case, the differentiations in front of

the convolution integrals are transferred over to the testing

functions which might also have square-root singularities.

Since the convolution integral of a Green’s function and a

function with a square-root singularity can yield a function

which also has a square-root singularity, the total integrand can

be a first-order singular function whose integral is convergent

in a two-dimensional space. Hence, using a function which has

a square-root singularity in the directions that are orthogonal

of the direction of the differentiation as expansion and testing

functions in (6) results in a convergent inner product.

It should also be noted that the point matching (impulse test-

ing functions) can not be used unless the expansion functions

are twice-differentiable in the variable of the impulse. The

variation of the expansion function in the orthogonal direction

should be chosen according to the variation of impulse in that

direction, which could be decided by examining (5) in the

spatial domain or given criteria in the spectral domain.

IV. CONCLUSIONS

The choice of the expansion and testing functions is rather

crucial in the MoM solution, because this choice plays an

important role on the convergence of the integrals and, con-

sequently, on the results. Through a thorough examination

of the convergence question we conclude that the classes of

functions from which the expansion and testing functions are

chosen must satisfy the following criteria: (i) In the direction

of the polarization of the current, the sum of the order of the

differentiability of the expansion and testing functions must

be equal to or greater than one; (ii) in the orthogonal direction

of the polarization of the current, any piecewise continuous

function or even functions with singularities of the order of

less than one are admissible.

APPENDIX A

The Green’s functions in (12) were obtained by using the

where

spectral domain immhtance approach [3] as

Z.Z = 2’ cos2 ke + .Zh sin2 ko

2ZV = (2e – 2h) sin Icecos ke

2YZ = (2e – 2h) sin kg cos lqj

Zvv = 2e sinz kO + 2h cos2 k~

()

k
6’ = tan-l ~

‘x

z: =
1 j = TM for e

~0 + Yil cothyla! i = TEforh

The TE and TM wave impedances are defined as

jwp
ZTEi = —

‘YZ
and z’TMi = - fori=O,l

72 ‘Jw.c~

(Al)

(A2)

(A3)

(A4)

(A5)

and the complex wavenumbers are
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for2 =0,1 (A6)

in the air and substrate, respectively.
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