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Abstract—It is well known that the choice of expansion and test-
ing functions plays an important role in determining the rate of
convergence of the integrals associated with the moment method
matrix, and that an improper choice can lead to erroneous resuits.
The main objective of this paper is to critically examine this
convergence issue and to provide criteria for the choice of these
expansion and testing functions. The question of whether these
functions need to satisfy the Holder condition is also investigated
and the convergence behavior of the integrals involved in the
spatial and spectral domain moment method is discussed for some
representative expansion and testing functions.

1. INTRODUCTION

HE METHOD of moments (MoM) [1], which is one

of the most commonly used numerical techniques for
solving electromagnetic problems, is based upon the transfor-
mation of an operator equation into a matrix equation. While
the computation of the matrix elements in the MoM can be
carried out relatively efficiently when the medium involved is
free-space, the introduction of a substrate material backed by
a ground plane can render this task extremely time-consuming
because of the need to compute the Sommerfeld’s integrals
appearing in the Green’s functions. One approach to circum-
venting this difficulty is to work in the spectral domain [2]
where the closed-form expressions for the Green’s functions
can be obtained in a relatively straightforward manner [3].
Another solution to this problem has been recently developed
[41-[6] in the spatial domain where the Green’s functions cor-
responding vector and scalar potentials were cast into closed-
forms. Both the spatial and spectral domain approaches have
been successfully applied to many electromagnetic problems
involving microstrip-type structures. However, the questions
pertaining to the choice of the expansion and testing functions
in formulating the MoM matrix have not been addressed
in much detail except in the context of linear spaces and
operators strictly from a mathematical point of view [7],
[8], and briefly in connection with the spectral Galerkin’s
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method [9]; consequently, there are still some open questions
regarding the use of certain expansion and testing functions
for the operator equations that are used in electromagnetic
problems [10]-[13]. The purpose of this paper is to show
mathematically that there is an admissible class of functions
for expansion (testing) functions depending upon the choice
of testing (expansion) functions. If one choose these functions
such that they fall outside of the admissible class, the integrals
involved in the application of the MoM can be divergent and
the results can be erroneous. Additionally, the issues involving
the slow convergence of the integrals often encountered in the
spectral domain, and the handling of discontinuous expansion
functions at junctions or corners, and in the source excitation
region, are also addressed.

We begin by discussing briefly, in Section II, the application
of the moment method in the spatial and spectral domains and
by deriving the expressions for the MoM mairix elements that
turn out to be improper integrals. The convergence of these
integrals is studied for different combinations of expansion and
testing functions in both the spatial and spectral domains. This
is followed in Section III, with a discussion on the convergence
behavior of the integrals involved for a representative choice
of expansion and testing functions.

II. CONVERGENCE CRITERIA FOR THE
INTEGRALS OF THE METHOD OF MOMENTS

Consider, for the sake of illustration, a general microstrip
structure shown in Fig. 1 where it is assumed that the substrate
layer extends to infinity in the transverse directions. Let the
thickness and the permittivity of the substrate be denoted by d
and ¢,., respectively. Although the Green’s functions discussed
herein pertain to the geometry shown in Fig. 1, the comments
appearing below apply to more general geometries as well.

A. Convergence Study in the Spatial Domain

Let us begin by representing the electric fields in terms of
scalar and vector potentials, ¢ and A, respectively,

E=—jwA-V¢ 1)

The vector and scalar potentials can, in turn, be represented in
terms of convolution integrals, involving the surface current
density J on the patch, as

A=G'«J (22)
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Fig. 1. A general microstrip structure.
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p=Cyx|—V-J (2b)
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where G* is the dyadic Green’s function of the vector
potential and G is the Green’s function of the scalar potential.
From (2), the tangential electric fields on the plane of the patch
(z = 0) can be written as

Ep = — jwG4 % J,
19

ﬁg;[Gq*VvJ] (3a)
Ey = — jwGy, = J,
+3—3[G %V - J (3b)
jwdy 1

It may be noted that the spatial domain Green’s functions,
appearing in (3), have algebraic singularities of the first order;
that is, G ~ O(1/|r —'|) as r — 1/, where 7 and 7’ are the
observation and source coordinates, respectively.

To solve for the surface current density on the patch by the
Mo, the first step is to expand the surface current densities
by a linear combination of the expansion functions as follows:

Jw = ZAngn(may) + st(w,y) (4a)

Jy = ZBnJyn(x’ y) + Jys(xay) (4b)

where A, and B, are the unknown coefficients of the ex-
pansion functions J, and Jy,, and Jpc and Jy are the

source representations. These expansion functions can be
subsectional, traveling-wave, or entire-domain type depending

upon the geometry under consideration. Next we substitute
(4) into (3) and test the resulting equations using the functions
Tem and Ty, and a suitable definition of inner product, e.g.,

() = / / dz dy *(,y) 9(z, y) ©)

The process of testing could be interpreted as satisfying the
boundary conditions on the tangential electric fields on the
patch in the integral sense, provided that the domain of the
testing functions covers the entire patch. Since the testing
functions and the tangential electric fields are finite on the
complementary regions, the left-hand sides of (3a) and (3b)
become zero after the testing, and the following algebraic
equations for the coefficients A, and B, are obtained for
each m in (6a) and (6b) at the bottom of the page, where
Jo = Jre® + Jysy.

Note that some of the inner products in (6) contain dif-
ferentiations that result in higher order singularities in the
corresponding integrands than those that do not contain these
derivatives. Thus, it will be sufficient to study only the terms.
with the derivatives in order to ensure the convergence of
all the integrals. In general, each inner product term in the
spatial domain is a five-dimensional integral: one of these
is associated with the Green’s function itself; two of them
are convolution integrals; and, the other two are the inner
products defined in (5). Since the numerical integration of the
five-dimensional integrals is very expensive, the convolution
over the Green’s function and the expansion function is often
transferred over to the expansion and testing functions and
the convolution is performed analytically. This transfer of
the convolution requires an interchange of the order of the
integrals, which is possible if the original integral is uni-
formly convergent. Here, we will use the following sufficiency
criterion [14] for the uniform convergence of the integral:

A

T'n—oz

IF(x17$27"'axn;l‘/laxlzf"ax;z)l< N
where F'(x1,%3, -, Zn; 21, Th, -+, x},) is the integrand given
in a bounded domain; A is a constant; « > 0; and r denotes
the distance between (z1, %2, -, %,) and (27,25, --,2}).
The issue regarding the choice of the expansion and testing
functions can now be discussed by investigating the elements
of (6a) and (6b). Since the strongest conditions on the expan-

sion and testing functions for the convergence of the integrals

, 1 Afg .0 Ll 9,0
;A"{<Txm7 Gwm * J$n> + w2 Tmm; 6:v Gq * 81’ Jaf:n + ;Bn w2 Txm; 8:1} Gq * é—y-Jyn
(T, GA w1 — (T D16V 0] (63)
Ty xrr s (Uz xmy 8.7; q 8
1 ) 0 1 0 d
;Bn{<Tym,ny s Jym) + E<Tym, 7 [Gq * %JynJ>} + ;An{§<Tym, o {Gq * %JM]>}
= —(Tym, G2 % J, 1 T 0 G,V -J
- _< ymy Gy * ys) - ﬁ ym 5_3/—[ g * : 5} (6b)
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would be set by the term containing the double derivatives
with respect to the same variable, only the integral containing
Jen and Ty, will be studied in detail. This integral is:

Tmm, 9 [G * aJ ]>
a:
= drdyT, —8— " dy
= Y mm(x,y)ax dz’ dy

D(T) D(B)
%)
'Gq(x_wlay_y/)E?an(xl’yl> (8)

where D(T") and D(B) represent the domain of the testing and
expansion functions, respectively, and the second term in the
inner product is the tangential derivative of the scalar potential.
If one were to calculate the derivative of the inner double
integral in (8), which is a convolution integral, the derivative of
the expansion function in this integral has to satisfy the Holder
condition [15]. This condition is somewhat stronger than
the continuity condition but weaker than the differentiability
condition [16]. However, in the MoM, we are interested in
calculating the inner product of the derivative of the scalar
potential with a testing function. If the testing function is at
least piecewise continuous, we can use integration by parts to
transfer the differentiation of the scalar potential over to the
testing function as follows:

0 0
%)
= dy Tmm(xay) Gq * %an |meQ(T)
0 0
_<a-xTwman* é‘agjmn> (9)

where the expression in the braces is evaluated at the bound-
aries of the testing functions, denoted here by (7). Once
this is done, the restriction on the charge density to satisfy
the Holder condition can be lifted. The step involving the
integration by parts must be justified, because the piece-
wise differentiable expansion functions cannot ensure the
existence of the tangential derivative of the scalar potential.
In accordance with the discussion presented in [17], the
existence in Riemann sense of either one of the integrals
in (9) also implies the existence of the other. The integral
in the right hand side of (9) is guaranteed to satisfy the
Riemann’s integrability condition if the testing functions are
at least piecewise continuous functions in the direction of
differentiation while the expansion functions are piecewise
differentiable or smoother.

Similar arguments can be applied to the second inner prod-
uct term in (6b) where the differentiations are with respect to
y. Note also that the other terms which have derivatives along
x as well as y directions do not require as strong a condition
on the expansion and testing functions as do the terms that
contain both of these differentiations in the same direction. As
a consequence, the expansion functions for the current density
should be chosen at least from a class of piecewise continuous

functions and the testing functions should in turn be selected
from piecewise differentiable functions, or vice versa. These
conditions apply to these functions along the differentiation of
the scalar potentials. This, in turn, implies that

Jon(2,9) 2 Fu(w)Ga(y)
Tyn(2,y) & Fy(2)Gy(y) (10a)
Ton(2,y) 2 Pu(z)Ra(y)
Tyn(z,y) £ P,(z)R,(y) (10b)

where F,(z), Gy (y) € class of piecewise differentiable func-
tions and P,(z),Ry(y) € class of piecewise continuous
functions, or vice versa. However, the functions can have
square-root singularities in the direction orthogonal to that
of the differentiation to model the singular behavior of the
edge current, ie., G,(y), Fy(z), Rz(y) and Py(x) € class of
piecewise continuous functions with or without square-root
singularities. The requirements on the testing and expansion
functions can be relaxed by using higher order differentiabie
functions. For instance, if the chosen expansion (testing)
functions are twice-differentiable, then piecewise continuous
testing (expansion) functions or even impulse distributions are
sufficient to ensure the convergence of the integral. Among
the commonly used expansion and testing functions, piecewise
sinusoids (PWS) and triangle functions are piecewise differ-
entiable functions, pulse functions and any type of junction
expansion functions, e.g., half triangle, half PWS, etc., are
piecewise continuous functions.

It is essential to use piecewise continuous expansion func-
tions, with finite discontinuities in the direction of the differen-
tiation, for the geometries that have junctions, load or source
connections in the domain of interest [18]-[20]. For these
cases, the impulse functions generated by the differentiations
of the expansion functions at the point of discontinuities should
not be included in the calculations, because the divergence
of the current in (3) must be finite at these junctions. This
could be interpreted simply as requiring the continuity of the
current at the junctions. This is tantamount to saying that the
discontinuity of the current in one direction must equal to the
negative of the discontinuity in the other direction such that
their derivatives cancel each other at that point.

B. Convergence Study in the Spectral Domain

The tangential electric field on the plane of the patch due
to the patch currents J, and J, can be written, in terms of the
electric field Green’s functions, as convolution type coupled
integral equations as follows:

Ew(:l‘7 Y,z = 0)
= // da' dy' (Zow(z — o',y — ) o2, y')
D(B)
-l—ny(.?I —mlvy_ y/)‘]y(x/vyl)] (lla)
Ey(z,y,z=0)
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= // de' dy' [Zye(z — 2’y — ') Jo(a',y)

D(B)

+ Zyy(z — 2’y — o) Iy (2, 9)] (11b)
where the Green’s function Z,, is the contribution of a unit
j-directed electric current element at the microstrip to the
electric field F, at the microstrip plane. In the spectral domain
formulation, these equations are Fourier transformed to yield
the following algebraic equations

Ey(kn ky) = Zow(koky) Jo(ke, ky)

+ Zgy (b, b)) Ty (Ko, Koy (122)
Ey(ke, ky) = Zymfkwky)Jw(kw, k:y)

The electric field Green’s functions in the spectral domain
can be readily obtained by using the immittance approach
described by Itoh [3]. The application of the moment method
starts with the expansion of the current densities as in (4),
substitution of the Fourier transforms of these expansion
functions in (12) followed by the testing with the Fourier
transforms of the testing functions. Following this procedure
one arrives at the following algebraic equations:

+ Z Bn(Ta."ma Zmnyn> =0 (13a)
> An(Tyms Zys Tzn)
+ 3 Bu(Tym, ZyyJyn) = 0 (13b)

where the inner products are defined over an infinite domain.
The convergence of the integrals is guaranteed provided that

[F ki, ko, kn)| < AET7F (14)
where F'(ky, ko, - -, ky) is the integrand, k= \/k¥+ k2 +- - -+ k2
and ¢ > 0.

A knowledge of the leading terms of the asymptotic ex-
pansions of the Green’s functions, expansion functions and
testing functions is needed for establishing the convergence of
the inner products in (13). The leading terms of the Green's
functions are obtained from (A1)-(A6) in Appendix A and
are given by

~ 1 k?
Lz — = = (15a)
1+er
jweo(l+e) fr2 4 k2
- . 1 -
Zoy = ZLyy — ~ kaky (15b)
jweg(l + Gr) k?c + klg
. 1 k2
Y {(15¢)

i .
vy jgjfo(l + 61') k% + k;

As for the expansion and testing functions, it can be shown
that they have the general behavior of the form;

~ 1
Tom (ke ky) — O ;
oo i)

~ 1
~ 1
Yy Y kmky
= 1
Yy Y kxky

The convergence of the inner products in (13) can now be
investigated with a view to defining the minimum of the orders
of &, and k,. Note that the leading terms of the expansion and
testing functions for large spectral variables have been chosen
for the worst case conditions because their numerators have
been assumed to be constant. We observe, for instance, that
the Fourier transform of a pulse function is sin (k)/k whose
integral over an infinite domain is convergent whereas that of
1/k is divergent. Returning to the inner products in (13), the
convergence of the integrals are investigated as follows:

i)

+o0
(Toms Zwwdgn) — // dk, dk,

O 1 k2 o( 1)
keky ) Jkz k2 \kaky

The convergence of the above integral is guaranteed if one
chooses @ + v > 3 and # + n > 1. Some comments on
the class of expansion and testing functions which satisfy the
above criteria are given later in this section.

i)

+oo

O<1) kaky O(l)
keky ) ez +kz \RER

For this integral, the conditions a+v > 2 and S8+ 7 > 2 must
be satisfied in order for the integral to converge.

Similarly, by considering the other two inner products in
(13b), we can derive the conditions on the exponents of the
spectral domain variables k. and k. These are: iii) ¢ +v > 2
and K +7 > 2,iv) ¢« +v > 1 and k + 7 > 3. The conditions
given above are sufficient for the convergence of the integrals.

At this point it would be useful to list the asymptotic
behaviors for large k of a number of representative expansion
and testing functions frequently employed in the moment
method solutions to electromagnetic problems of the type
being considered in this paper:

F{6(z)} — 0O(1)

F{functions with square-root singularities} < O(Jo(k)) as
kE —
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F{piecewise continuous functions} < O(1/k) as k — oo

F{piecewise differentiable functions} < O(1/k?) as k —
00

F{piecewise twice-differentiable functions} < O(1/k*) as
k— o

where F denotes the Fourier transform and k is the spectral
domain variable. It should be emphasized that there exists
the possibility that some of the functions in the same class
might decay slightly faster than the others. As an example,
we mention the triangular function, which is a piecewise
differentiable function, and which has the Fourier transform in
the form of sin? (k)/k2. As mentioned before, the worst case
behaviors in the spectral domain are considered here so that
the convergence for every function in a given class is assured.

For the specific geometry, one can refer to the convergence
criteria and the classification of functions given above in order
to facilitate the choice of the expansion and testing functions.

III. RESULTS AND DISCUSSIONS

In this section we discuss several choices of the expansion
and testing functions from the point of view of convergence.
We draw from the pool of commonly used expansion and
testing functions in electromagnetic problems, viz., the im-
pulse, pulse, triangular, piecewise sinusoid, and entire domain
functions. A number of different combination of expansion
and testing functions are considered in the following:

(i) Both J, and J, represented by pulses in x as well as y
directions: Since the pulse is a piecewise continuous function,
it can not satisfy the Holder condition. The current expansion
functions J,, and J,,, are represented as [P(x)- P(y)], where
P(-) denotes the pulse function. Both of the differentiations in
the second inner product term in (6a) should be transferred to
the testing function, implying that the testing function should
be selected at least from the group of piecewise differentiable
functions with respect to x. While the transfer of the differ-
entiation on the expansion function may not be strictly valid
in the classical sense, it is nonetheless legitimate to carry it
out in the sense of distributions. From the examination of
the third inner product in (6a), the testing function should at
least be a piecewice continuous function in y. In summary, the
testing functions T, and T, could be triangular functions
along their polarizations and pulse functions in the orthogonal
directions of their polarizations. Although it might appear that
this choice of the expansion and testing functions does not
yield convergent integrals in the spectral domain the integrals
are actually convergent albeit slowly. This is because the
Fourier transforms of the pulse and triangular functions are
proportional to sinc(k) and sinc 2(k), respectively, and these
are less than or equal to 1/k and 1/k% for 0 < k < oo,
(sinc (k) < 1/k, sinc®(k) < 1/k?). The convergence of the
integrals in the spectral domain can be improved by using the
following expansion and testing functions. (i) Both J, and J,
represented by roof-tops: A roof-top consists of a triangular
function in the direction of polarization and pulse function
in the orthogonal direction to the polarization of the current.
With this choice, the convergence is sufficiently rapid in the
spectral domain and it is not necessary to transfer the inner

[] ] 1 1 1
o T
0 =5 . . : j..
—o—1) Pulse =
1= i —e—2)Triangle -~ -
ol , F | —o-3)Pulsc*Triangle i
* 3 f ‘ 3
£ ; : :
Z 3y e
2 F i 3
Y A
E 47 E 3
5 et e -3
E i ; ]
P R i i i 1 3
] i 1 1 LB
0 50 100 150 200 250 300
kx

Fig. 2. Convergence of a spectral domain integral for a roof-top expansion
function and three different testing functions: (1) [Pulse(x) Pulse(y)]; (2)
[Triangle (x) Pulse(y)]; (3) [(pulse(z)* Triangle(x)) Pulse(y)]. Vertical
axis is logyq |I(kz)/Io| where I is defined in (17) and Iy = I(k,) with
0 < ke < Aky.

differentiations to the testing functions in the spatial domain.
There is, however, a disadvantage in using the higher order
differentiable functions, namely their Fourier transforms are
oscillatory. This could be seen by examining the pulse and
triangular functions in the spectral domain. The use of the
higher order differentiable functions as expansion or testing
functions helps decrease the range of the integrations at the
cost of increasing the complexity and computation time for
the integrands. We will now illustrate the convergence of
the following moment integral for three different choices for
testing functions

I=/ / dhiy, dky T (Ko, Ky )
0 0
k2

a7

where
Jen(kz, ky) = F{Triangle(z) Pulse(y)}
= sinc? (k. /2) sinc (k)
1. F{Pulse(z) Pulse(y)}
= sinc? (ke /2) sinc (ky)
sz(km, k,) = 2. F{Triangle(z) Pulse(y)}

= sinc? (k,/2) sinc (k,)
3. F{[Triangle(z)x Pulse(x)] Pulse(y)}
= sinc?(k/4) sinc (k,/2) sinc(ky)

Fig. 2 shows the normalized contribution of integral I (17) on
each sub-interval Ak, of k., until it becomes less than 1075,
We observe that the integration limit reduces significantly as
one goes from the testing function 1 to 3, viz., from 6.6 CPU
sec to 1.2 CPU sec on the Cray Y/MP. (iii) An entire do-
main expansion function with a square-root singularity: Note
that the square-root singularity appears not in the direction
of the differentiations but in the orthogonal direction, (6).
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Consequently, the convolution integrals are still integrable
because the order of singularity is less than 2 which is the
criterion for the uniform convergence of the two-dimensional
integrals (7). For this case, the differentiations in front of
the convolution integrals are transferred over to the testing
functions which might also have square-root singularities.
Since the convolution integral of a Green’s function and a
function with a square-root singularity can yield a function
which also has a square-root singularity, the total integrand can
be a first-order singular function whose integral is convergent
in a two-dimensional space. Hence, using a function which has
a square-root singularity in the directions that are orthogonal
of the direction of the differentiation as expansion and testing
functions in (6) results in a convergent inner product.

It should also be noted that the point matching (impulse test-
ing functions) can not be used unless the expansion functions
are twice-differentiable in the variable of the impulse. The
variation of the expansion function in the orthogonal direction
should be chosen according to the variation of impulse in that
direction, which could be decided by examining (5) in the
spatial domain or given criteria in the spectral domain.

IV. CONCLUSIONS

The choice of the expansion and testing functions is rather
crucial in the MoM solution, because this choice plays an
important role on the convergence of the integrals and, con-
sequently, on the results. Through a thorough examination
of the convergence question we conclude that the classes of
functions from which the expansion and testing functions are
chosen must satisfy the following criteria: (i) In the direction
of the polarization of the current, the sum of the order of the
differentiability of the expansion and testing functions must
be equal to or greater than one; (ii) in the orthogonal direction
of the polarization of the current, any piecewise continuous
function or even functions with singularities of the order of
less than one are admissible.

APPENDIX A

The Green’s functions in (12) were obtained by using the
spectral domain immittance approach [3] as

Zow = 2°cos® kg + Z"sin® ke (A1)
Zwy = (Z° — Z")sin kg cos kg (A2)
Zye = (Z2° — Z") sin kg cos kg (A3)
~yy = Ze Sin2 kg + Zh C082 ]99 (A4)
where
k
0=tan"* | 2

Z~}; _ 1 i =TMf{ore

- Yio + Y; cothyid i = TEforh

The TE and TM wave impedances are defined as
g = JWE - ad Zoms = 1,% fori =0,1 (AS5)

2 €;

and the complex wavenumbers are

vi = \[k2 + k] — k]

in the air and substrate, respectively.

fori = 0,1 (A6)
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